Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development
نویسندگان
چکیده
Heparan sulfate proteoglycans (HSPG) are components of the extracellular matrix through which axons navigate to reach their targets. The heparan sulfate (HS) side chains of HSPGs show complex and differentially regulated patterns of secondary modifications, including sulfations of distinct hydroxyl groups and epimerization of an asymmetric carbon atom. These modifications endow the HSPG-containing extracellular matrix with the potential to code for an enormous molecular diversity. Attempting to decode this diversity, we analyzed C. elegans animals lacking three HS-modifying enzymes, glucuronyl C5-epimerase, heparan 6O-sulfotransferase, and 2O-sulfotransferase. Each of the mutant animals exhibit distinct as well as overlapping axonal and cellular guidance defects in specific neuron classes. We have linked individual HS modifications to two specific guidance systems, the sax-3/Robo and kal-1/Anosmin-1 systems, whose activity is dependent on different HS modifications in different cellular contexts. Our results demonstrate that the molecular diversity in HS encodes information that is crucial for different aspects of neuronal development.
منابع مشابه
Conservation of anatomically restricted glycosaminoglycan structures in divergent nematode species.
Heparan sulfates (HS) are glycosaminoglycans of the extracellular matrices and characterized by complex modification patterns owing to sulfations, epimerization, and acetylation. Distinct HS modification patterns have been shown to modulate protein-protein interactions during development in general and of the nervous system in particular. This has led to the heparan sulfate code hypothesis, whi...
متن کاملDistinct 3-O-Sulfated Heparan Sulfate Modification Patterns Are Required for kal-1−Dependent Neurite Branching in a Context-Dependent Manner in Caenorhabditis elegans
Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles o...
متن کاملThe PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans.
Sulfations of sugars, such as heparan sulfates (HS), or tyrosines require the universal sulfate donor 3'-phospho-adenosine-5'-phosphosulfate (PAPS) to be transported from the cytosol into the Golgi. Metazoan genomes encode two putative PAPS transporters (PAPST1 and PAPST2), which have been shown in vitro to preferentially transport PAPS across membranes. We have identified the C. elegans orthol...
متن کاملSubstrate specificity of heparanases from human hepatoma and platelets.
Heparan sulfate proteoglycans, attached to cell surfaces or in the extracellular matrix, interact with a multitude of proteins via their heparan sulfate side chains. Degradation of these chains by limited (endoglycosidic) heparanase cleavage is believed to affect a variety of biological processes. Although the occurrence of heparanase activity in mammalian tissues has been recognized for many y...
متن کاملDeterminants of Glycosaminoglycan (GAG) Structure
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 41 شماره
صفحات -
تاریخ انتشار 2004